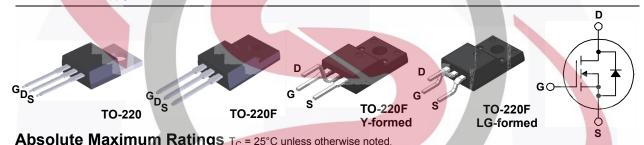


August 2014

FDP51N25 / FDPF51N25 N-Channel UniFETTM MOSFET 250 V, 51 A, 60 m Ω

Features


- $R_{DS(on)} = 48 \text{ m}\Omega \text{ (Typ.)} @ V_{GS} = 10 \text{ V}, I_D = 25.5 \text{ A}$
- Low Gate Charge (Typ. 55 nC)
- Low C_{rss} (Typ. 63 pF)

Applications

- PDP TV
- Lighting
- Uninterruptible Power Supply
- AC-DC Power Supply

Description

UniFETTM MOSFET is Fairchild Semiconductor's high voltage MOSFET family based on planar stripe and DMOS technology. This MOSFET is tailored to reduce on-state resistance, and to provide better switching performance and higher avalanche energy strength. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp ballasts.

Symbol	Para	ameter		FDP51N25	FDPF51N25 FDPF51N25YDTU FDPF51N25RDTU	Unit
V _{DSS}	Drain-Source Voltage			250		
I _D	Drain Current	- Continuous (T _C = - Continuous (T _C =	,	51 30	51* 30*	A A
I _{DM}	Drain Current	- Pulsed	(Note 1)	204	204*	Α
V _{GSS}	Gate-Source voltage			±	30	V
E _{AS}	Single Pulsed Avalanche Ene	ergy	(Note 2)	1	111	mJ
I _{AR}	Avalanche Current		(Note 1)		51	А
E _{AR}	Repetitive Avalanche Energy		(Note 1)		32	mJ
dv/dt	Peak Diode Recovery dv/dt		(Note 3)		1.5	V/ns
P _D	Power Dissipation	(T _C = 25°C) - Derate Above 25	°C	320 3.7	38 0.3	M\.c
T _{J,} T _{STG}	Operating and Storage Temp	erature Range		-55 t	o +150	°C
T _L	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds			300		°C

^{*}Drain current limited by maximum junction temperature.

Thermal Characteristics

Symbol	Parameter	FDP51N25	FDPF51N25 FDPF51N25YDTU FDPF51N25RDTU	Unit
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case, Max.	0.39	3.3	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient, Max.	62.5	62.5	°C/W

©2008 Fairchild Semiconductor Corporation FDP51N25 / FDPF51N25 Rev. C2

Package Marking and Ordering Information

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FDP51N25	FDP51N25	TO-220	Tube	N/A	N/A	50 units
FDPF51N25	FDPF51N25	TO-220F	Tube	N/A	N/A	50 units
FDPF51N25YDTU	FDPF51N25	TO-220F (Y-formed)	Tube	N/A	N/A	50 units
FDPF51N25RDTU	FDPF51N25	TO-220F (LG-formed)	Tube	N/A	N/A	50 units

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit		
Off Charac	Off Characteristics							
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}, T_J = 25 ^{\circ}\text{C}$	250			V		
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C	-	0.25		V/°C		
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 250 V, V _{GS} = 0 V V _{DS} = 200 V, T _C = 125°C	47		1 10	μA μA		
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V			100	nA		
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -30 V, V _{DS} = 0V			-100	nA		
On Charac	cteristics							
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3.0		5.0	V		
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 25.5 A	\	0.048	0.060	Ω		
9 _{FS}	Forward Transconductance	V _{DS} = 40 V, I _D = 25.5 A		43	-	S		
Dynamic C	Characteristics							
C _{iss}	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V,	7-	2620	3410	pF		
C _{oss}	Output Capacitance	f = 1 MHz		530	690	pF		
C _{rss}	Reverse Transfer Capacitance			63	90	pF		
Switching	Characteristics							
t _{d(on)}	Turn-On Delay Time	V _{DD} = 125 V, I _D = 51 A,		62	135	ns		
t _r	Turn-On Rise Time	V_{GS} = 10 V, R_G = 25 Ω		465	940	ns		
t _{d(off)}	Turn-Off Delay Time			98	205	ns		
t _f	Turn-Off Fall Time	(Note 4)		130	270	ns		
Qg	Total Gate Charge	V _{DS} = 200 V, I _D = 51 A,		55	70	nC		
Q _{gs}	Gate-Source Charge	V _{GS} = 10 V		16	7	nC		
Q _{gd}	Gate-Drain Charge	(Note 4)		27	1	nC		
Drain-Source Diode Characteristics and Maximum Ratings								
Is	Maximum Continuous Drain-Source Dioc	de Forward Current	BT /	3 - N	51	A		
I _{SM} Maximum Pulsed Drain-Source Diode Fo		or <mark>ward C</mark> urrent		9-N	204	A		
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 51 A			1.4	V		
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _S = 51 A,		178		ns		
Q _{rr}	Reverse Recovery Charge dI _F /dt =100 A/μs			4.0		μС		

Notes

- 1. Repetitive rating: pulse-width limited by maximum junction temperature.
- 2. L = 0.68 mH, I $_{AS}$ = 51 A, V $_{DD}$ = 50 V, R $_{G}$ = 25 $\Omega,$ starting T $_{J}$ = 25 $^{\circ}C.$
- 3. $I_{SD} \le 51$ A, di/dt ≤ 200 A/ μ s, $V_{DD} \le BV_{DSS}$, starting $T_J = 25^{\circ}C$.
- 4. Essentially independent of operating temperature typical characteristics.

Typical Performance Characteristics

Figure 1. On-Region Characteristics

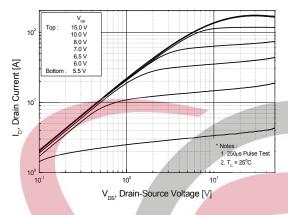


Figure 3. On-Resistance Variation vs.

Drain Current and Gate Voltage

Figure 2. Transfer Characteristics

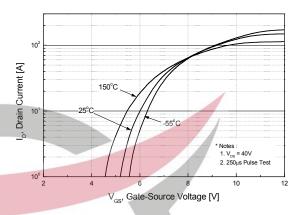


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperatue

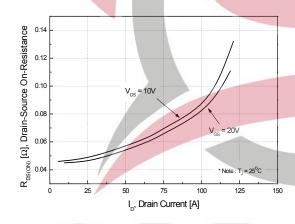


Figure 5. Capacitance Characteristics

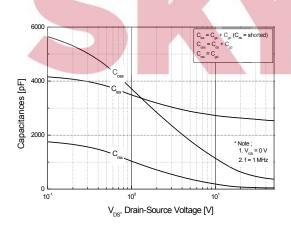
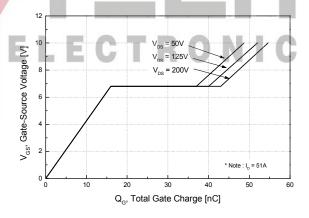



Figure 6. Gate Charge Characteristics

1.0

V_{sn}, Source-Drain voltage [V]

1.2

www.fairchildsemi.com

250μs Pulse Test

1.4

Drain Current [A]

Reverse

_ DR,

0.2

0.4

Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

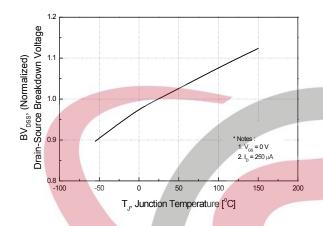


Figure 8. On-Resistance Variation vs. Temperature

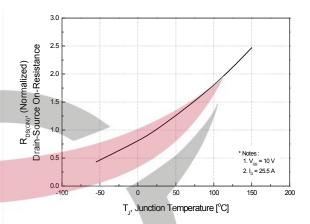
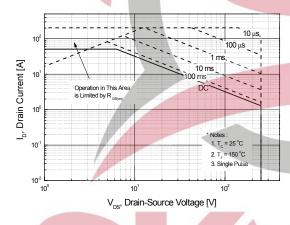



Figure 9-1. Maximum Safe Operating Area for FDP51N25

Figure 9-2. Maximum Safe Operating Area for FDPF51N25 / FDPF51N25YDTU

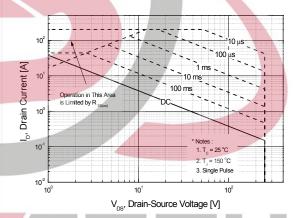
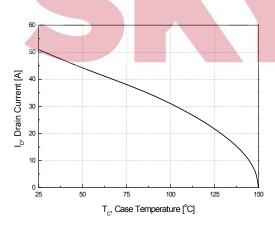



Figure 10. Maximum Drain Current vs. Case Temperature

ELECTRONIC

©2008 Fairchild Semiconductor Corporation FDP51N25 / FDPF51N25 Rev. C2

Typical Performance Characteristics (Continued)

Figure 11-1. Transient Thermal Response Curve for FDP51N25

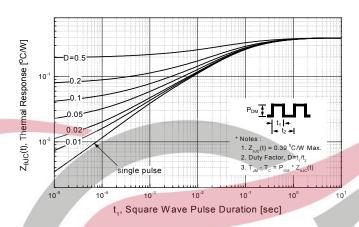
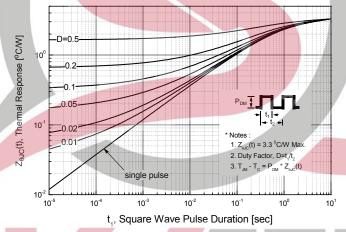



Figure 11-2. Transient Thermal Response Curve for FDPF51N25 / FDPF51N25YDTU

S TELECTRONIC

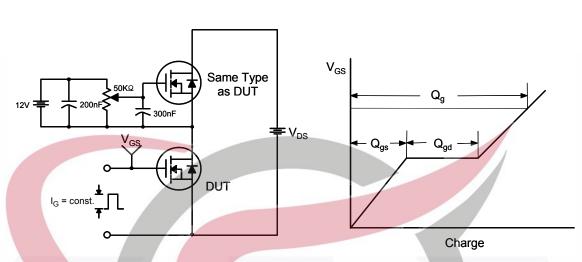


Figure 12. Gate Charge Test Circuit & Waveform

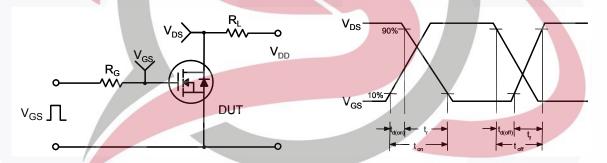


Figure 13. Resistive Switching Test Circuit & Waveforms

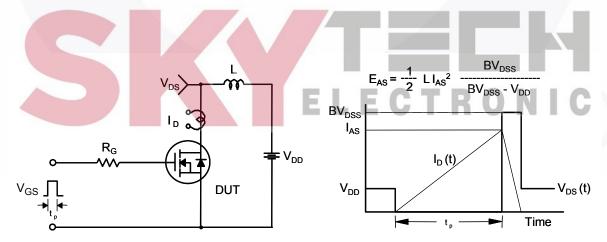
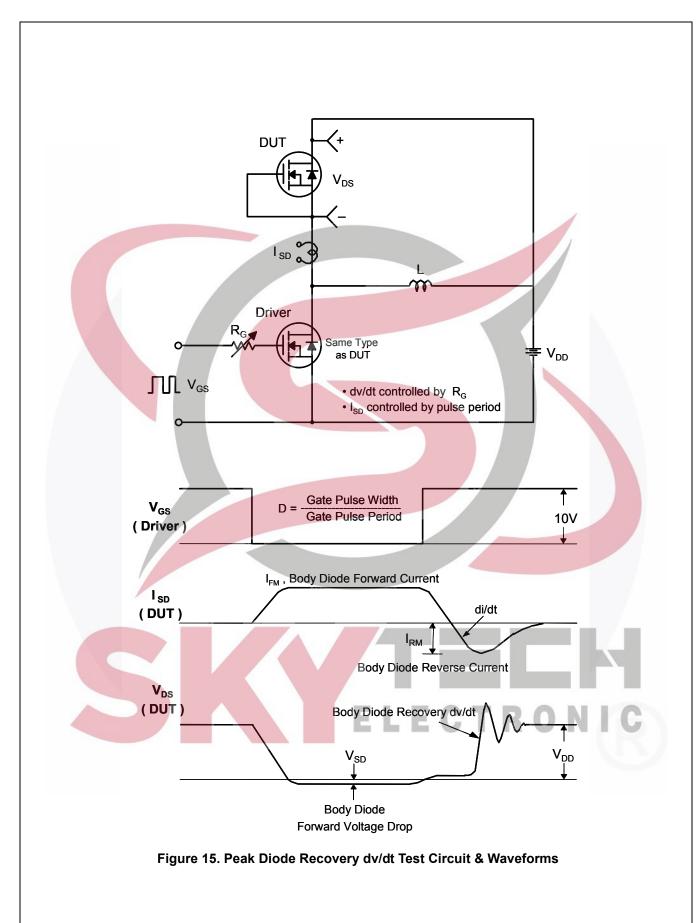
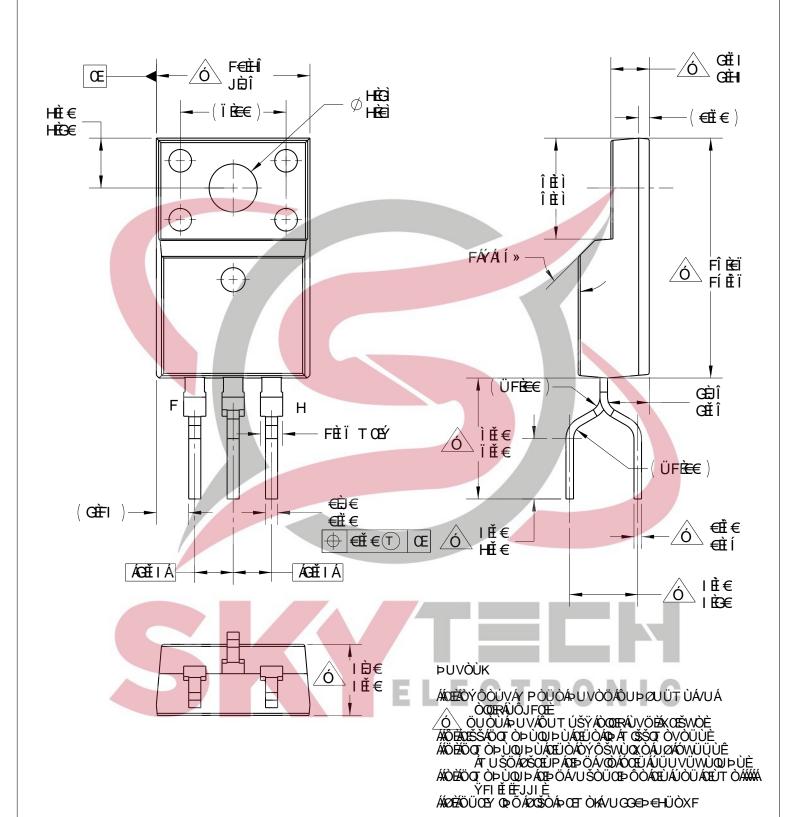
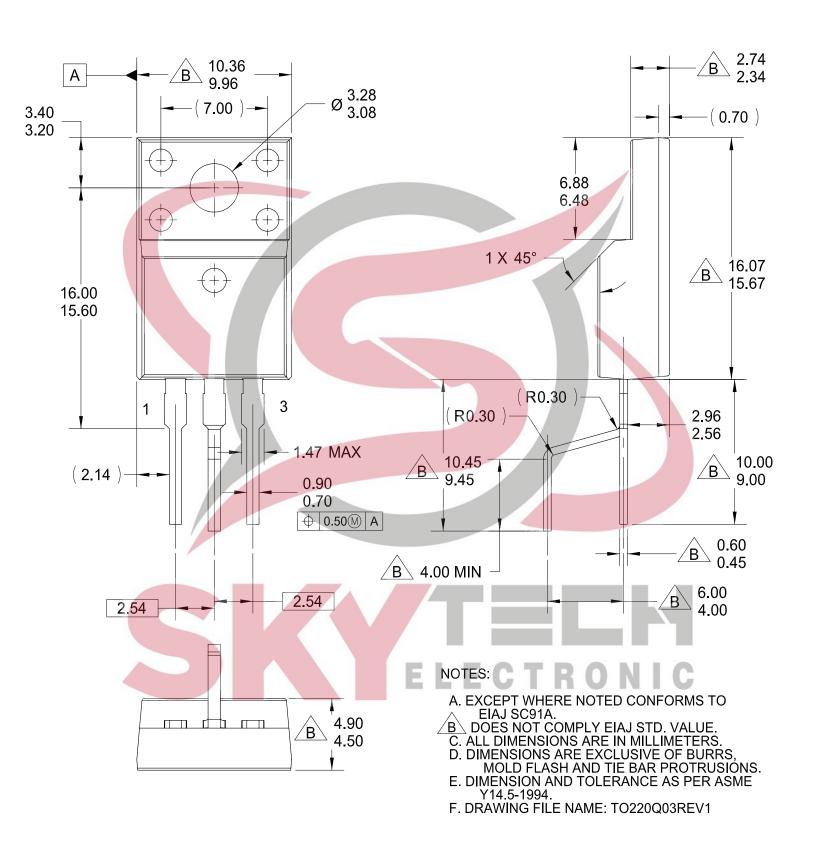
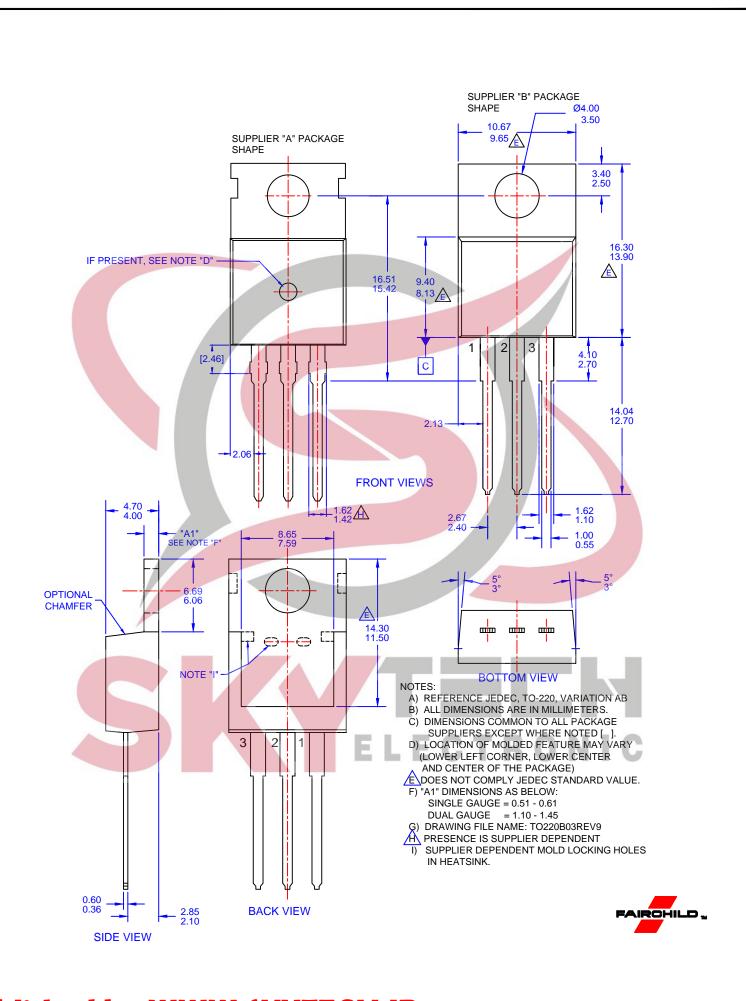
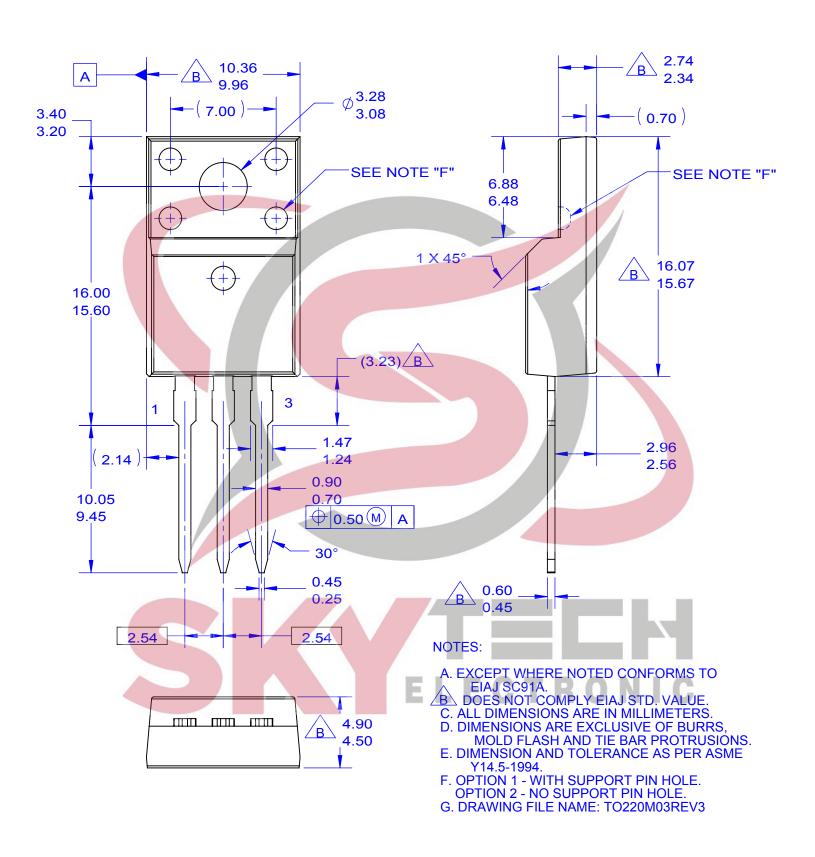




Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms






ÚÞÚÐ					
PÓÜ ÖÖÙÖÜÜVŒ PÖŒÖ ÓŸÐÐÚÜÖÖÖÖ					
F	ÜÒŠÒŒÙÒÖÁ/U <i>Á</i> ÖÔÔ	€IRWÞ€Ì	ÙÖŠÒÒÐÜWZPUW		

ŒÚÚÜUXŒŠÙ	ÓŒVÒ					
^{ŎŨŒY ÞK} ÓUÓUŸÁTŒŠÖU	€IRWÞ€Ì		AIR	CHILE	-	
^{ÓPÓÓSÒÖK} ÙÖÆSÒÒ		SE	MICO	NDUCTO	Rтм	
ŒÚŰUXĊŎK ÓŸÁPWŒĐÕ		VU GO€ÉÁT U ŠÖÖÖÉÁHŠÖÉÁØWŠŠ				
ŒŰŰUXĊŎK PUYŒŰÖÁŒŠŠÒÞ		ÚŒĴSĒŔÒŒJŖÁŨĴJFĒŠÕÁØUÜT			-	
ÚŬURÔÔVQJÞ ŽTTÁ		ióceso FKF	ùazò Þ£0 0E	T SVË/U		ΰάx F
Ø-ÔP		ØUÜT ÖÜ	ŠŸK ⊳£0E		ÚPÔÔVÁK F	ÁJØÁF

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ F-PFS™ FRFET® AttitudeEngine™

Awinda[®] Global Power Resource SM

AX-CAP®* GreenBridge™ BitSiC™ Green FPS™

Build it Now™ Green FPS™ e-Series™ CorePLUS™ Gmax™

CorePOWER™ GTO™ CROSSVOLT™ IntelliMAX™ CTL^{TM} **ISOPLANAR™**

Current Transfer Logic™ Making Small Speakers Sound Louder and Better™

MegaBuck™

MicroFET™

MicroPak™

MicroPak2™

MillerDrive™

MotionMax™

MotionGrid[®]

mWSaver®

OptoHiT™

OPTOLOGIC®

MTi[®]

MTx[®]

MVN®

MICROCOUPLER™

DEUXPEED® Dual Cool™ EcoSPARK® EfficientMax™ ESBC™ •®

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT[®]

FastvCore™ FETBench™ FPS™

Power Supply WebDesigner™

OFFT QS™ Quiet Series™

SignalWise™ SmartMax™

Solutions for Your Success™

SPM® **STEALTH™** SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS®

SyncFET™ Sync-Lock™

OPTOPLANAR®

PowerTrench[©] PowerXSTI

Programmable Active Droop™

RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SMART START™

TinyBoost[®] TinyBuck[®] TinyCalc™ TinyLogic[®] TINYOPTO™ TinvPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™

TRUECURRENT®* ւSerDes™

 $\mathcal{M}_{ ext{SerDes}}$ LIHC Ultra FRFET™ UniFET™ VCX^{TM}

VisualMax™ VoltagePlus™ XSTM Xsens™ 仙童™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR <u>/ FAIRCHILDSEMLCOM,</u> FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application - including life critical medical equipment - where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com,

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Definition of Terms					
Datasheet Identification	Product Status	Definition			
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.			
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.			

Rev 176